首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36685篇
  免费   1656篇
  国内免费   2031篇
测绘学   1151篇
大气科学   4180篇
地球物理   7548篇
地质学   14110篇
海洋学   3527篇
天文学   6568篇
综合类   765篇
自然地理   2523篇
  2022年   437篇
  2021年   575篇
  2020年   552篇
  2019年   622篇
  2018年   1081篇
  2017年   1034篇
  2016年   1248篇
  2015年   805篇
  2014年   1203篇
  2013年   1999篇
  2012年   1268篇
  2011年   1593篇
  2010年   1395篇
  2009年   1773篇
  2008年   1513篇
  2007年   1477篇
  2006年   1435篇
  2005年   1118篇
  2004年   1040篇
  2003年   996篇
  2002年   968篇
  2001年   933篇
  2000年   979篇
  1999年   965篇
  1998年   837篇
  1997年   914篇
  1996年   756篇
  1995年   741篇
  1994年   690篇
  1993年   575篇
  1992年   542篇
  1991年   484篇
  1990年   469篇
  1989年   441篇
  1988年   434篇
  1987年   413篇
  1986年   375篇
  1985年   459篇
  1984年   446篇
  1983年   459篇
  1982年   427篇
  1981年   384篇
  1980年   413篇
  1979年   330篇
  1978年   307篇
  1977年   296篇
  1976年   266篇
  1975年   263篇
  1974年   270篇
  1973年   261篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The Rb–Sr characteristics of whole-rock samples of Upper Vendian clayey rocks recovered by Gavrilov-Yam boreholes are studied. The Rb–Sr age versus sampling depth relationship has been revealed. Three sample assemblages are identified. The errorchron relationship of samples in the first interval (1760–2400 m) fits the age of 390 ± 40 Ma corresponding to the initial Hercynian history characterized by the transformation of platformal sediments. The other two assemblages (2410–2525 and 2528–2560 m) make up isochrons with slopes corresponding to 590 ± 50 and 690 ± 10 Ma, respectively. Their geochronological meaning is unclear.  相似文献   
992.
993.
The application of variations in the earth's gravity in groundwater exploration on a regional scale, especially in sedimentary basins, metamorphic terrains, valley fills, and for buried alluvial channels, is well established. However, its use in hard crystalline rocks is little known. In granite, for example, the upper weathered layer is a potential primary aquifer, and the underlying fractured rock can form a secondary aquifer. Fracturing and weathering increases the porosity of a rock, thereby reducing the bulk density. Changes in gravity anomalies of 0.1–0.7 mGal for granites, due to weathering or variations in lithology, can be detected. To test the use of gravity as a groundwater exploration tool for crystalline rocks, a gravity survey of the peninsular shield granites underlying Osmania University Campus, Hyderabad, India, was undertaken. At the site, gravity anomalies reflect variations in the lithology and in the thickness of weathered zones. These anomalies also define the position of intrusives and lineaments. Areas of more deeply weathered granite that contain wells of higher groundwater yield are represented by negative gravity values. In the weathered zone, well yield has an inverse relation to the magnitudes of residual gravity. The study confirms the feasibility of gravity as a tool for groundwater exploration in crystalline rocks. Electronic Publication  相似文献   
994.
This study describes the petrography of peridotite xenoliths,and the major and trace element geochemistry of garnets in bothxenoliths and coarse concentrate from the Drybones Bay kimberlite.The temperature and depth of equilibration of clinopyroxeneand garnet show that the mantle lithosphere beneath the SW marginof the Slave Province was at least 160 km thick at the timeof kimberlite emplacement (  相似文献   
995.
The mechanisms and kinetics of equilibration between peraluminousminerals and granitic melt were investigated experimentallyby the dissolution of corundum and andalusite into H2O-saturatedmetaluminous haplogranitic melt at 800°C and 200 MPa. Mineraland haplogranitic glass rods were juxtaposed inside platinumcapsules, and then subjected to experimental conditions fortimes ranging from 12 to 2900 h. Upon melting, the mineral –meltinterface retreats with the square root of time. The compositionof the melt at the interface changes with time, but its ASI[aluminum saturation index = molar Al2O3/(CaO + Na2O + K2O)]remains constant at  相似文献   
996.
New compositional data and petrogenetic models are presentedfor pre-Upper Miocene volcanism in the northern Puna of Argentina(22°S–24°S). Two phases of volcanism producedsmall dome complexes of mainly silicic andesite to low-SiO2rhyolite. The Upper Oligocene–Lower Miocene phase (UOLM,20–17 Ma), produced two distinct groups of rocks. TheUOLM-1 group is metaluminous and mainly andesitic, with isotopiccompositions like those of the recent arc (87Sr/86SrT  相似文献   
997.
A consideration of the dune:antidune transition in fine gravel   总被引:1,自引:0,他引:1  
Hydraulic data defining the dune:antidune transition in fine gravel are compared with potential flow theory, and information is drawn from published experiments and field‐based studies. Attention is given to both transitional bedforms and the development of downstream‐migrating antidunes. In the latter case, most data pertain to sand beds and not to gravel. Empirical data provide some weak support for the theoretical notion that the transition occurs at progressively lower Froude numbers at greater relative depths. Although a critical Froude number of 0·84 may reasonably be applied for the beginning of the dune to antidune transformation, lag effects (and a possible depth limitation) ensure that transitional bedforms may persist across a broad range of Froude numbers from 0·5 to 1·8. This latter observation has great relevance for palaeohydraulic estimates derived from outcrop data. Whereas the application of theoretical bedform existence fields, based upon potential flow theory, to fine gravel was previously purely speculative, the addition of experimental and field data to these plots provides a degree of confidence in applying stability theory to practical geological problems. For the first time, laboratory data pertaining to downstream‐migrating gravel antidunes are compared with theory. These bedforms have been reported from certain experimental near‐critical flows above sand or gravel beds, but have been observed infrequently in natural streams. However, there are no detailed studies from natural rivers and only a few contentious identifications from outcrops. Nevertheless, the limited hydraulic data conform to theoretical expectations.  相似文献   
998.
Multichannel seismic reflection data acquired by Marine Arctic Geological Expedition (MAGE) of Murmansk, Russia in 1990 provide the first view of the geological structure of the Arctic region between 77–80°N and 115–133°E, where the Eurasia Basin of the Arctic Ocean adjoins the passive-transform continental margin of the Laptev Sea. South of 80°N, the oceanic basement of the Eurasia Basin and continental basement of the Laptev Sea outer margin are covered by 1.5 to 8 km of sediments. Two structural sequences are distinguished in the sedimentary cover within the Laptev Sea outer margin and at the continent/ocean crust transition: the lower rift sequence, including mostly Upper Cretaceous to Lower Paleocene deposits, and the upper post-rift sequence, consisting of Cenozoic sediments. In the adjoining Eurasia Basin of the Arctic Ocean, the Cenozoic post-rift sequence consists of a few sedimentary successions deposited by several submarine fans. Based on the multichannel seismic reflection data, the structural pattern was determined and an isopach map of the sedimentary cover and tectonic zoning map were constructed. A location of the continent/ocean crust transition is tentatively defined. A buried continuation of the mid-ocean Gakkel Ridge is also detected. This study suggests that south of 78.5°N there was the cessation in the tectonic activity of the Gakkel Ridge Rift from 33–30 until 3–1 Ma and there was no sea-floor spreading in the southernmost part of the Eurasia Basin during the last 30–33 m.y. South of 78.5°N all oceanic crust of the Eurasia Basin near the continental margin of the Laptev Sea was formed from 56 to 33–30 Ma.  相似文献   
999.
A combined volcanological, geochemical, paleo-oceanological, geochronological and geophysical study was undertaken on the Kurile Basin, in order to constrain the origin and evolution of this basin. Very high rates of subsidence were determined for the northeastern floor and margin of the Kurile Basin. Dredged volcanic samples from the Geophysicist Seamount, which were formed under subaerial or shallow water conditions but are presently located at depths in excess of 2300 m, were dated at 0.84±0.06 and 1.07±0.04 Ma with the laser 40Ar/39Ar single crystal method, yielding a minimum average subsidence rate of 1.6 mm/year for the northeast basin floor in the Quaternary. Trace element and Sr–Nd–Pb isotope data from the volcanic rocks show evidence for contamination within lower continental crust and/or the subcontinental lithospheric mantle, indicating that the basement presently at 6-km depth is likely to represent thinned continental crust. Average subsidence rates of 0.5–2.0 mm/year were estimated for the northeastern slope of the Kurile Basin during the Pliocene and Quaternary through the determination of the age and paleo-environment (depth) of formation of sediments from a canyon wall. Taken together, the data from the northeastern part of the Kurile Basin indicate that subsidence began in or prior to the Early Pliocene and that subsidence rates have increased in the Quaternary. Similar rates of subsidence have been obtained from published studies on the Sakhalin Shelf and Slope and from volcanoes in the rear of the Kurile Arc. The recent stress field of the Kurile Basin is inferred from the analysis of seismic activity, focal mechanism solutions and from the structure of the sedimentary cover and of the Alaid back-arc volcano. Integration of these results suggests that compression is responsible for the rapid subsidence of the Kurile Basin and that subsidence may be an important step in the transition from basin formation to its destruction. The compression of the Kurile Basin results from squeezing of the Okhotsk Plate between four major plates: the Pacific, North American, Eurasian and Amur. We predict that continued compression could lead to subduction of the Kurile Basin floor beneath Hokkaido and the Kurile Arc in the future and thus to basin closure.  相似文献   
1000.
Hydrocarbons occur in two regional, Upper Cretaceous limestone units—the Turonian-Coniacian Petrel Member, and the Santonian-Maastrichtian Wyandot Formation. The units form important seismic markers beneath the Scotian Shelf and the Grand Banks of Eastern Canada. They mainly consist of bioturbated chalk and minor amounts of calcareous mudstone. A search for source rock using the Δ log R technique showed intervals with source potential, but testing of core and cuttings by Rock-Eval analysis showed no source potential. Three issues are the main cause for the inconsistency: (1) unconsolidated shales that likely included organic material were lost during sample washing; (2) severe contamination by mud additives; and (3) presence of gas. The organic matter found on the shelf has been strongly oxidised, but the distal facies of these limestone units and condensed shale units above and below may yet have potential to form source rock, beyond the studied areas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号